present; it is occupied only on a statistical basis (occupancy of 22%) by sodium atoms. This cation could be said to be attached to the cavity wall, while the surface still exposed is coordinated by water molecules. This type of coordination is usual in zeolites and has been found, for instance in harmotome (Sadanaga, Marumo & Takéuchi, 1961), jugawaralite, and has also been noted in gismondite and levinite (Kerr & Williams, 1969).

Note added in proof: Since the acceptance of this paper another study on the refinement of stilbite has been published (Slaughter, 1970). Differences between the two papers are slight: Slaughter examines cation positions < 5 % occupancy; he suggests a different interpretation of the distribution of Si/Al atoms; temperature factors are slightly different.

The author wishes to thank G. Gottardi for his helpful comments and critical reading of the manuscript. This research was supported by the Consiglio Nazionale delle Ricerche, Roma.

References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. USAEC Report ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE. USAEC Report ORNL-TM-306, Oak Ridge National Laboratory, Tennessee.
- CORNI, V. & GOTTARDI, G. (1964). Rev. Sci. Instrum. 35, 1613.
- GABUDA, S. P., LUNDIN, A. G. & MIKHAILOV, G. M. (1963). *Geochemistry*, **4**, 458. [Translated from *Geokhimiya*, (1963). **4**, 436].
- GALLI, E. & GOTTARDI, G. (1966). *Miner. Petrogr. Acta*, **12**, 1.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- KERR, I. S. & WILLIAMS, D. J. (1969). Acta Cryst. B25, 1183.
- MEIER, W. M. (1968). In *Molecular Sieves*, p. 10. London: Society of Chemical Industry.
- SADANAGA, R., MARUMO, F. & TAKÉUCHI, Y. (1961). Acta Cryst. 14, 1153.
- SLAUGHTER, M. (1970). Amer. Min. 55, 387.
- SMITH, J. V., RINALDI, F. & DENT GLASSER, L. S. (1963). Acta Cryst. 16, 45.

Acta Cryst. (1971). B27, 841

The Crystal Structure of L-Dopa Hydrochloride, 3-(3,4-Dihydroxyphenyl)-L-Alanine Hydrochloride, C₉H₁₂O₄NCl*

BY RONALD J. JANDACEK AND KENNETH M. EARLE

Neuropathology Branch, Armed Forces Institute of Pathology, Washington, D.C. 20305, U.S.A.

(Received 9 June 1970)

The crystal structure of L-dopa hydrochloride. 3-(3,4-dihydroxyphenyl)-L-alanine hydrochloride, was determined from three-dimensional data collected manually with a General Electric XRD6 diffractometer using Cu $K\alpha$ radiation. The crystals are monoclinic, $P2_1$, with $a = 6.261 \pm 0.007$, $b = 5.821 \pm 0.001$, $c = 15.646 \pm 0.003$ Å, and $\beta = 112.66 \pm 0.02^{\circ}$. The structure was refined to a conventional R value of 7.9%. Extensive intermolecular hydrogen bonding is present. The aromatic ring forms an angle of of 39.1° with the plane of the carboxyl group.

The compound 3-(3,4-dihydroxyphenyl)-L-alanine (Ldopa) (Fig. 1) has been used for the treatment of Parkinson's disease. Slowly increasing oral doses of L-dopa have been reported to induce at least partial improvement of some of the manifestations of Parkinson's disease, and in some cases the improvement has been dramatic (Cotzias, Papvasiliou & Gellene, 1969). Because of the interest in this compound as a promising therapeutic agent, the study of the crystal structure of the hydrochloride of this amino acid was undertaken.

Experimental

Crystals of the hydrochloride of L-dopa were obtained by the evaporation of a solution of L-dopa in concentrated hydrochloric acid. The L-dopa was obtained from Nutritional Biochemicals Corporation. The crystal was aligned with the unique b axis parallel to the φ axis of a General Electric XRD6 diffractometer singlecrystal orienter. The space group was determined to be P2₁ by searching for reflections with the diffracto-

^{*}The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

This project was supported in part by a research contract, Project No. 3A014501B71Q, from the Medical Research and Development Command, U.S. Army, Washington, D.C.

Reprint requests to the Armed Forces Institute of Pathology, Washington, D.C. 20305 (Dr Earle).

meter. The following dimensions of the unit cell were determined by a least-squares fit to 2θ values measured with Cu K α radiation and the diffractometer with a 0.02° slit in the receiving aperture:

 $a = 6.261 \pm 0.002$ Å, $b = 5.821 \pm 0.001$, $c = 15.646 \pm 0.003$ Å, $\beta = 112.66 \pm 0.02^{\circ}$.

There are two formula weights in the unit cell, and the calculated density is 1.478 g.cm⁻³ as compared with 1.477 g.cm⁻³, measured by flotation in carbon tetra-chloride and benzene.

The data were measured by the stationary-counter stationary-crystal technique with Ni-filtered Cu Ka radiation, and 880 of 903 independent intensities were considered observed. The unobserved reflections were assigned intensities equal to 0.5 times the intensity of the minimum observable intensity. The intensity data were converted to structure amplitudes by the application of Lorentz and polarization factors, a factor to correct for $\alpha_1\alpha_2$ splitting, and a factor to approximately correct absorption as a function of the diffractometer φ setting.

Determination of the structure

The x and z coordinates of the chloride ion were determined from a three-dimensional Patterson func-

Fig. 2. Bond distances with e.s.d.'s $\times 10^3$ in parentheses.

tion, and an arbitrary y coordinate was assigned. A three-dimensional Fourier synthesis was calculated with the phases determined by the chloride position. The spurious mirror plane in this map did not prevent the correct determination of the positions of all non-hydrogen atoms of the molecule.

Table 1. Atomic positions

E.s.d.'s \times 10⁴ are given in parentheses.

	x/a	y/b	z/c
Cl-	0.4075 (4)	0.4118	0.0587 (2)
Ν	0.4707 (13)	0.4150 (26)	0.8683 (6)
C(1)	0.8470 (18)	0.4658 (23)	0.8529 (8)
C(2)	0.5808 (17)	0.4412 (31)	0.7986 (7)
C(3)	0.5269 (18)	0.2407 (28)	0.7348 (8)
C(4)	0.2693 (18)	0.2163(25)	0.6781 (7)
C(5)	0.1506 (19)	0.0269 (25)	0.6962 (8)
C(6)	0.0912 (21)	0.0033 (25)	0.6401 (8)
C(7)	0.1997 (18)	0.1595 (25)	0.5732 (8)
C(8)	0.0835 (19)	0.3521(23)	0.5552 (8)
C(9)	0.1576 (19)	0.3741 (28)	0.6115 (8)
O(1)	0.9135 (12)	0.4117 (27)	0.9369 (5)
O(2)	0.9642 (13)	0.5279 (21)	0.8100 (6)
O(3)	0.2206 (14)	0.1750 (19)	0.6518 (7)
O(4)	0.4332 (12)	0.1204 (18)	0.5205 (6)

After four molecules of full-matrix least-squares refinement with isotropic temperature factors, the R

843

index $(\sum ||F_o| - |F_c||)/(\sum |F_o|)$ was 12.8%. Three cycles of least-squares with anisotropic temperature factors reduced the *R* to 8.8%, and a difference density was then calculated. The hydrogen atoms were identified in this map and were included in three cycles of fullmatrix least-squares with isotropic temperature factors of 2.0 Å². All hydrogen parameters were held constant, and all reflections were weighted equally; the final *R* value is 7.9%. The scattering factors used are those found in *International Tables for X-ray Crystallo*-

Fig. 4. A projection along the b axis. The broken lines indicate probable hydrogen bonds identified by labels A through H, which are described in Table 4.

graphy (1962). The fractional coordinates of the atoms are given in Table 1, and anisotropic temperature factors are listed in Table 2. Table 3 lists the observed and calculated structure amplitudes and the phase angles, with unobserved reflections followed by 'U'.

Discussion of the structure

The bond lengths and angles are shown in Fig. 2 and 3 respectively. The aromatic ring is planar, with all six of the carbon atoms less than 0.01 Å from the best-fit plane of the ring. C(3) and O(4) are 0.04 Å from this plane, and O(3) is less than 0.01 Å from it. The four

Fig.3. Bond angles in degrees with e.s.d.'s in parentheses.

Table 2. Anisotropic temperature factors $\times 10^3$

The form of the expression is $\exp \left[-\frac{h^2 \beta_{11} + k^2 \beta_{22} + l^2 \beta_{33} + 2hk \beta_{12} + 2hl \beta_{13} + 2kl \beta_{23}}{1 + 2kl \beta_{23}}\right]$. E.s.d.'s range from 0.1×10^{-4} to 6×10^{-3} .

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cl-	12.8	11.2	2.9	0.5	1.5	0.0
Ν	9.4	17.6	2.6	-2.3	3.1	-1.1
C(1)	8·1	17.3	2.8	2.2	1.1	-0.7
C(2)	6.8	21.9	2.7	-2.2	2.7	-0.9
C(3)	6.2	28.2	2.2	- 1.8	0.9	-4.0
C(4)	7.4	20.6	1.9	3.0	0.9	-0.5
C(5)	11.1	17.6	2.6	3.5	1.3	0.3
C(6)	14.4	13.6	2.6	-0.3	2.5	-2.3
C(7)	7.4	17.7	2.4	1.1	0.7	-1.8
C(8)	11.3	19.6	2 ·7	-0.7	1.7	0.2
C(9)	11.1	22.3	2.7	5.7	1.7	-0.9
O(1)	6.9	35.6	3.0	-4·4	0.7	1.6
O(2)	6.6	37.8	4·2	0.1	3.2	4.2
O(3)	10.5	16.6	5.3	-1.5	2.6	1.7
O(4)	7.1	21.0	3.7	-0.3	0.9	09

atoms O(1), O(2), C(1) and C(2) form a plane with each of the four less than 0.01 Å from the plane. The plane of the benzene ring forms an angle of 39.1° with the carboxyl plane, and the angle between the C(1)–C(2)–O(1) plane and the C(1)–C(2)–N plane is 14.0° .

As in many amino acids, the intermolecular hydrogen bonding in L-dopa HCl is extensive. The short intermolecular distances and probable hydrogen bonds are shown in Fig. 4 in a projection along the b axis and are identified in Table 4. The chloride ion in the type A interaction (see Fig. 4 and Table 4) is equidistant (2.6 Å) from each of the hydrogen atoms involved in the hydrogen bonding labeled B and C, and bifurcated hydrogen bonding is suggested. The chloride-hydrogen attraction in types B and C is stronger than in type A, with Cl-H distances of 2.3 and 2.1 Å respectively, and

Table 3. Observed and calculated structure fact	l and calculated structure factors
---	------------------------------------

Table 3 (cont.)

Ł	10 i r ol	10 gr _e	ao	٤ :	10 7 ₀ 1	10 hr_1	۰°	Ł	10 F _o l	10 7 c	a ⁰	2	on _o i 1	0 Pc	a°	t	10 17.1	10 7 _c	a°	Ľ	10 [70]	10 17	۵ ⁰
2 -4 -3 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	10 Hg R2 5n 77 184 187 184 187 184 187 184 187 187 187 187 187 187 187 187	10 Fc 4 52 86 86 86 67 105 105 105 105 105 105 105 105	0° 16# 313 9E 6 301 72 354 260 220 250 287 137 241 137 241 137 53 44 73 64 73 47 237 9 242	2 -18 -17 -10 -17 -10 -11 -12 -11 -12 -11 -12 -11 -12 -12	20 Irg 1 1 26 37 68 10 19 10 13 13 13 13 13 13 13 13 13 13	to brcl 462 31 502 29 67 7 31 9 52 31 19 54 135 135 135 135 135 135 135 135	0° 357 0 180 180 180 0 180 180 0 0 180 0 0 180 0 0 180 0 0 180 0 0 180 0 0 180 0 0 180 0 0 0 0 0 0 0 0 0 0 0 0 0	2 -3 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	10 r ₀ 171 80 38 37 57 171 80 38 57 171 90 161 101 42 80 9 9 92 15 102 10	10 r_c 512 512 513 514 50 91 119 91 119 91 119 91 119 104 64 522 70 64 85 203 155 165 119 91 119 119 119 119 119 119	60 85 25 43 264 1900 244 1900 244 208 244 208 247 237 237 210 319 U 188 78 60 143 60 143 60 143 244 1400 61 158 60 61 158 60 61 158 60 60 158 140 60 158 140 60 158 140 60 158 140 60 158 140 60 158 140 60 158 140 60 158 140 60 158 140 60 158 158 140 60 158 158 140 60 158 158 158 158 158 140 158 158 158 158 158 158 158 158	2 1 -5 -3 -2 -10 0 1 2 3 -10 -10 -10 -17 -5 -5 -4 -7 -7 -7 -7 -7 -10 0 -17 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	10 mg 1 1 95 151 152 172 172 172 172 172 173 173 173 173 173 173 173 173 173 173	0 r_l 352 352 353 354 37 37 307 37 307 37 44 45 11 11 13 37 44 45 11 13 35 55 45 15 109 87 97 97 97 97 97 97 97 97 97 9	20 15 31 330 18 222 782 143 205 157 205 177 205 205 205 205 205 205 164 164 160 180 180 180 180 180 0 0 0 0 0 0 0 0 0 0 0 0 0	2 -13 -13 -12 -12 -12 -12 -12 -12 -12 -12	101701 139 114 95 91 144 46 46 46 46 47 77 77 91 139 112 95 62 132 132 132 24 92 96 14 48 48 46 47 137 139 112 48 46 46 46 46 46 46 46 46 46 46	10 P _c 16 d 16 d 12 + 105 105 105 105 105 105 105 105	a ^o 180 180 180 180 180 180 180 180	2 -8 -7 -5 -5 -5 -2 0 0 -14 -13 -11 -10 -9 -8 -7 -5 -5 -5 -5 -2 -1 1 1 0 1 0	10 (P ₀) 54 36 43 43 43 41 10 10 34 76 156 43 34 156 156 43 34 156 156 43 34 156 156 43 34 156 43 34 156 43 43 43 43 43 43 43 43 43 43	10 r_c 326 55 57 72 72 114 79 70 105 20 105 20 105 20 105 20 105 20 105 20 105 20 105 20 105 20 20 20 20 20 20 20 20 20 20	299 29345 155 79 175 180 180 180 180 180 180 180 180 180 180
\$	10	20 50 452	242	-15	5H 122	53 123	199 245 248	4 5	52	61 27	55	-14 -13 -12 -11	74 17 16	86 16 24	180 180 U 0 187 U	-7	131 108 113 10	120	318 307 63 U	0	47	55 722	٥
-8 -7 -6 -5 -4 -3 -10	21 81 44 97 72 35 84 31 92	27 82 47 97 69 35 97 93	84 87 139 129 110 103 343 27H 765	-12 -11 -10 -9 -8 -7 -6 -5 -5	113 53 50 54 58 306 261	123 61 67 34 50 52 57 309 271	250 220 92 148 297 336 243 82 35	-13 -12 -11 -10 -9 -8 -7 -0	73 95 106 33 20 37 110 96	554 117 29 15 54 117	193 210 141 26 21 78 765 259	-10 -9 -9 -9 -9 -9 -9 -3 -3 -2 -1	152 52 140 65 18 34 10 121 42	162 54 160 67 19 38 7 154 39	180 0 180 180 180 0 180 0 0	-4 -3 -2 -1 0 1	42 64 36 71 86 116	52 61 35 76 91 124 65¢ 20	210 162 78 100 111 117 19	0	50	65	4

Table 4. Description of probable hydrogen bonding shown in Fig. 4

Molecules I and II are the (xyz) and $(\bar{x}, \frac{1}{2} + y, \bar{z})$ molecules. E.s.d.'s in distance are from 0.010 to 0.015.

Type of interaction shown in	Probable donor (molecule I, 000)	• • • • •	Acceptor	Acceptor	Distance
Fig. 4		Acceptor	molecule	translation	Distance
A	N	Cl-	Ι	(001)	3•16 A
B	N	Cl-	II	(101)	3.10
\bar{c}	Ν	Cl-	II	(111)	3.13
Ď	N	O(2)	I	(100)	3.02
Ē	0(1)	Cl-	Ι	(101)	2.94
Ē	$\vec{O}(\vec{3})$	O(2)	Ι	(110)	2.87
Ġ	O(4)	$O(\overline{3})$	II	$(10\overline{I})$	2.98
н И	O(4)	O(4)	II	(101)	3.03
H'	O(4)	O(4)	II	(111)	3.03

the type A Cl-N interaction may be only the result of ionic attraction. The intermolecular interactions of the hydroxyl groups bonded to the phenyl group (types G, H, and H') are exceptionally long for oxygen to oxygen-hydrogen bonding (2.98 and 3.03 Å). The position of the peak in the difference density corresponding to the hydrogen bonded to O(4) indicates that it is attracted to both O(4) and O(3) of the molecule related by the screw axis, and again a bifurcated system is indicated. It should be noted that the intermolecular distances identified as H and H' are the same type of interaction, but for a given molecule O(4) acts as a donor in type H and an acceptor in type H' in the probable hydrogen-bonding system mentioned above.

The authors wish to acknowledge the programming assistance of Professor James Stewart and the University of Maryland Computer Center.

References

- COTZIAS, G., PAPAVASILIOU, P. & GELLENE, R. (1969). New Eng. J. Med. 280, 337.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.